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Wooaah...

https://adversarial-ml-tutorial.org

https://adversarial-ml-tutorial.org/


Outline

Introduction (Aleksander)

Adversarial examples and verification (Zico)

Training adversarially robust models (Zico)

Adversarial robustness beyond security (Aleksander)
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Outline

Adversarial examples and verification (Zico)
• Constructing adversarial examples

• Formal verification via combinatorial optimization

• Formal verification via convex relaxations

Training adversarially robust models (Zico)
• Adversarial training

• Robust optimization with convex relaxations

3



The big picture
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The big picture
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Part I: creating an adversarial example
(or ensuring one does not exist)

Part II: training a robust classifier



Part I: Adversarial examples and verification
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The inner maximization problem

How do we solve the optimization?

max
$∈∆

Loss *+ ,, .; 0

1. Local search (lower bound on 
objective)

2. Combinatorial optimization 
(exactly solve objective)

3. Convex relaxation (upper 
bound on objective)
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The linear case
Suppose our hypothesis is linear

Loss $+ &, (; * = , *-$ ⋅ (
(e.g. , hinge or logistic loss) and 
perturbation region Δ is a norm ball 
Δ = & ∶ & ≤ 2

Then maximization has exact  
solution based on dual norm; a 
simple instance of robust 
optimization [Stoyer, 1973, Ben-Tal et al., 
2011, Xu and Manor, 2009]
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The inner maximization problem

How do we solve the optimization?

max
$∈∆

Loss *+ ,, .; 0

1. Local search (lower bound 
on objective)

2. Combinatorial optimization 
(exactly solve objective)

3. Convex relaxation (upper 
bound on objective)
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Local search

For neural networks, the loss 
landscape is non-convex, inner  
maximization problem is difficult to 
solve exactly

This has never stopped us before in 
deep learning … let’s just find an 
approximate solution using gradient-
based methods
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Projected gradient descent 

Recall we are optimizing
max
$∈∆

Loss *+ ,, .; 0

We can employ a projected 
gradient descent method, take 
gradient step and project back into 
feasible set Δ
, ≔ 3∆[, +∇$Loss *+ ,, .; 0 ]
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The Fast Gradient Sign Method (FGSM)

To be more concrete, take Δ to be 
the ℓ∞ ball, Δ = {&: & ∞ ≤ )}, 
so projection takes the form

+∆ & = Clip(&, −), ) )

As 5 →∞, we always reach 
“corner” of the box, called fast 
gradient sign method (FGSM) 
[Goodfellow et al., 2014]

& = ) ⋅ sign ∇=Loss @+ &, B; D
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Illustration of adversarial examples

Will apologies to everyone, you are going to see MNIST examples in the 
tutorial  (yes, in 2018) … it is the best dataset for demonstrating some of 
the more computationally intensive methods
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FC-100
FC-10Conv-32x28x28

Conv-32x28x28

Conv-64x14x14

Conv-64x14x14

FC-200
FC-10

2-layer fully 
connected MLP 6 layer ConvNet



Illustrations of FGSM
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MLP:

ConvNet:
2.9% 1.1%

92.6%

41.7%

MLP ConvNet

Test Error, epsilon=0.1

Clean FGSM



Projected gradient descent

Projected gradient descent applied 
to ℓ∞ ball, repeat:

# ≔ Clip) # + +∇-. #

Slower than FGSM (requires multiple 
iterations), put typically able to find 
better optima
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Aside: Steepest descent
Gradients often small exactly at data 
points, so don’t use “standard” PGD

(Unnormalized) proj. steepest descent

! ≔ #∆ ! + argmax
+ ≤-

./∇12 !

E.g. for ℓ∞ (typicial to choose inner 

norm the same as the Δ constraint):

argmax
+ ≤-

./∇12 ! = 7 ⋅ sign(∇12 ! )
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Illustrations of PGD
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ConvNet
(FGSM):

ConvNet
(PDG)

2.9% 1.1%

92.6%

41.7%

96.4%

74.3%

MLP ConvNet

Test Error, epsilon=0.1

Clean FGSM PGD



Targeted attacks
Also possible to explicitly try to change label to a particular class

max
$∈∆

Loss *+ ,, .; 0 − Loss *+ ,, .targ; 0

Consider multi-class cross entropy loss

Loss *+ ,, .; 0 = log∑
:
expℎ> *+ , : − ℎ> * ?

Then note that above problem simplifies to 

max
$∈∆

ℎ> * ?targ − ℎ> * ?
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Targeted attack examples
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max
$∈∆

ℎ( ) 0 − ℎ( ) 7

max$∈∆ ℎ( ) 2 − ℎ( ) 7

Note: A targeted attack can 
succeed in “fooling” the 
classifier, but change to a 
different label than target



Non-ℓ∞ norms

Everything we have done with 
ℓ∞ norm possible with other ℓ#
norms

E.g., derive steepest descent 
for ℓ2 ball (i.e., normalized 
gradient descent), projection 
onto ball
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ℓ∞:

ℓ2:



About all those other attacks …

With apologies to the many authors that have written papers on different 
attacks, most of these are variants of PGD for different norm bounds

Our belief: at this point in the field, it is better to describe the attack in 
terms of 1) the allowable perturbation set Δ; 2) the optimization 
procedure used to perform the maximization
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The inner maximization problem

How do we solve the optimization?

max
$∈∆

Loss *+ ,, .; 0

1. Local search (lower bound on 
objective)

2. Combinatorial optimization 
(exactly solve objective)

3. Convex relaxation (upper 
bound on objective)
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∆
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Exact combinatorial optimization

To describe exact combinatorial optimization procedure, we need to more 
explicitly describe the network; consider a ReLU-based feedforward net

!1 = $

!%+1 = ReLU +%!% + ,% , . = 1,… ,1 − 1

ℎ4 $ =+5!5 + ,5

Targeted attack in ℓ∞ norm can be written as the optimization problem

minimize
<1:?

@A − @Atarg

F
+5!5 + ,5

subject to !%+1 = ReLU +%!% + ,% , . = 1,…1 − 1

!1 − $ ∞ ≤ O
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Solving combinatorial problem

The optimization formulation of an adversarial attack can be written as an 
binary mixed integer program [e.g., Tjeng et al., 2018, Wong and Kolter, 2018] or 
as a satisfisiability modulo theories (SMT) problem [e.g. Katz et al., 2017]

In practice, off-the-shelf solvers (CPLEX, Gurobi, etc) can scale to ~100 hidden 
units, but size depends heavily on problem structure (including, e.g, the size of !)

One of the key aspects of finding an efficient solution is to provide tight bounds 
on the pre-ReLU activations "# ≤ %#&# + (# ≤ )#
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Bound propagation

How do we get the bounds !",$"?  In general, if ! ≤ & ≤ $, then
' +! − ' −$+ * ≤ '&+ * ≤ ' +$ − ' −!+ *

Very loose in general, but 
still useful for IP

Will return when we discuss
convex relaxations
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Certifying robustness

Consider the objective or our optimization problem

!" − !"targ
( )*+* + -*

If we solve our the integer program for some .targ and the objective is 

positive, then this is a certificate that there exists no adversarial example 
for that target class

If objective is positive for all .targ ≠ ., this is a verified proof that there 

exists no adversarial example at all
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Certifying examples

27

min $7 − $0 ( )*+* + -*
s. t. …

min $7 − $1 ( )*+* + -*
s. t. …

= -2.54 (exists adversarial 
example for target class zero 
or another class)

= 3.04 (there is no adversarial 
example to make classifier 
predict class 1)



The inner maximization problem

How do we solve the optimization?

max
$∈∆

Loss *+ ,, .; 0

1. Local search (lower bound on 
objective)

2. Combinatorial optimization 
(exactly solve objective)

3. Convex relaxation (upper 
bound on objective)
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∆
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Convex relaxation of the integer program

Solving the integer program is too 
computationally expensive, so let’s 
consider a convex relaxation

Replace the bounded ReLU
constraints with their convex hull

Optimization problem becomes a 
linear program
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Note on the convex relaxation

Convex relaxation provides a strict 
lower bound on integer 
programming objective (because 
feasible set is larger)
Objective LP ≤ Objective(IP)

So if the objective of LP is still 
positive for all target classes, the 
relaxation gives a verifiable proof 
that no adversarial example exists
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Input x and
allowable perturbations

Final layer and
adversarial polytopeDeep network

Input x and
allowable perturbations

Final layer and
outer boundDeep network



Fast solutions to the relaxation

Solving a linear program with size 
equal to the number of hidden units 
in the network (once per example), 
is still not particularly efficient

Using linear programming duality, it 
is possible to achieve a lower 
bound on the LP program, via a 
single backward pass through the 
network [Wong and Kolter, 2018]
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Deepnetwork!1
# !2

# !3
#



Interval-based bounds

We can formulate optimization only 
considering bound constraints

min
$%

&' ()*) + ,)
s. t. 0 ≤ *) ≤ 2

Has the analytical solution:
&'() +ℓ − &'() −2+ &' ,)

Even looser that previous bound 
(but very fast to compute)

32

x z2 z3 z4



Certifying examples with convex bounds
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min $7 − $0 ( )*+* + -*
s. t. Binary IP constraints

min $7 − $1 ( )*+* + -*
s. t. Convex constraints

= -2.54 (exists adversarial 
example for target class zero 
or another class)

= 1.78 (there is no adversarial 
example to make classifier 
predict class 1)

min $7 − $0 ( )*+* + -*
s. t. Convex constraints

= -6.28 (may or may not exist 
adversarial example)



Part II: Training adversarially robust models
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The big picture
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min
$

∑
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Loss 2+ 4, 6; 8

Part I: creating an adversarial example
(or ensuring one does not exist)

Part II: training a robust classifier



The outer minimization problem

36

Inner maximization:

max
$∈∆

Loss *+ ,, .; 0

1. Local search (lower bound 
on objective)

2. Combinatorial optimization 
(exactly solve objective)

3. Convex relaxation (upper 
bound on objective)

Outer minimization:

min
3

∑
5,7∈8

max
$∈∆

Loss *+ ,, .; 0

1. Adversarial training

3. Provably robust training



Adversarial training
How do we optimize the objective

min
$

∑
&,(∈*

max
-∈∆

Loss 2+ 4, 6; 8

We would like to solve it with gradient descent, but how do we compute 
the gradient of the objective with the max term inside?
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Danskin’s Theorem

A fundamental result in optimization:
∇"max&∈∆

Loss ,+ ., 0; 2 = ∇"Loss ,+ .⋆, 0; 2

where .⋆ = max
&∈∆

Loss ,+ ., 0; 2

Seems “obvious,” but it is a very subtle result; means we can optimize 
through the max by just finding it’s maximizing value

Note however, it only applies when max is performed exactly

38



Deep learning to the rescue

Let’s just ignore that technicality, and 
proceed as if we were solving the 
maximization exactly!
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Adversarial training [Goodfellow et al., 2014]

Repeat

1. Select minibatch !
2. For each ", $ ∈ !, compute 

adversarial example &⋆ "
3. Update parameters

( ≔ ( − +
! ∑

-,/∈0
∇2Loss("+ &⋆ " , $; ()

Common to also mix robust/standard 
updates (not done in our case)
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1.1% 0.9%

41.7%

2.6%

74.4%

2.8%

ConvNet Robust ConvNet

Test Error, epsilon=0.1

Clean FGSM PGD



Evaluating robust models

Our model looks good, but we should be careful declaring success

Need to evaluate against different attacks, PGD attacks run for longer, 
with random restarts, etc

Note: it is not particularly informative to evaluate against a different type 
of attack, e.g. evaluate ℓ∞ robust model against ℓ1 or ℓ2 attacks
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What makes the models robust?
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Loss surface: 
standard training

Loss surface: 
robust training



Convex methods for certifying robustness

Let’s use the convex bounds (in 
this case, interval-bound-based 
approach) to see what level of 
adversarial performance we can 
guarantee for the robust model
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1.1% 0.9%

41.7%

2.6%

74.4%

2.8%

100% 100%

ConvNet Robust ConvNet

Test Error, epsilon=0.1

Clean FGSM

PGD Provable bound



Convexly verifiable models

Key insight: models that can be 
(convexly) verified to be robust are a 
small subset of the actually robust
models

Convex bounds are typically very 
loose unless the model was built 
with them in mind
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All models

Robust models

Convexly 
verifiable 
models



Training provably robust models

Convex bounds are differentiable
functions of network parameters

Can train networks to minimize 
these bounds directly

Recent work shows that interval 
bounds often outperform more 
complex strategies [Mirman et al, 2018, 
Gowal et al., 2018]
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1.1% 0.9% 5.1%

41.7%

2.6%
7.5%

74.4%

2.8%
7.79%

100.0% 100.0%

9.7%

ConvNet Robust ConvNet Robust bound
ConvNet

Test Error, epsilon=0.1

Clean FGSM PGD Provable bound



A word of caution…

Despite the “good” results we saw in this tutorial, this is more a function 
MNIST than representative of where we really are in adversarial 
robustness

More from Aleksander on this… 
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