
Adversarial Robustness:
Theory and Practice

Zico Kolter12, Aleksander Madry3

1Carnegie Mellon University
2Bosch Center for Artificial Intelligence
3Massachusetts Institute of Technology

1

Wooaah...

https://adversarial-ml-tutorial.org

https://adversarial-ml-tutorial.org/

Outline

Introduction (Aleksander)

Adversarial examples and verification (Zico)

Training adversarially robust models (Zico)

Adversarial robustness beyond security (Aleksander)

2

Outline

Adversarial examples and verification (Zico)
• Constructing adversarial examples

• Formal verification via combinatorial optimization

• Formal verification via convex relaxations

Training adversarially robust models (Zico)
• Adversarial training

• Robust optimization with convex relaxations

3

The big picture

4

min
$

%&,(max
+∈∆

Loss 1+ 3, 5; 7

The big picture

5

min
$

∑
&,(∈*

max
-∈∆

Loss 2+ 4, 6; 8

Part I: creating an adversarial example
(or ensuring one does not exist)

Part II: training a robust classifier

Part I: Adversarial examples and verification

6

The inner maximization problem

How do we solve the optimization?

max
$∈∆

Loss *+ ,, .; 0

1. Local search (lower bound on
objective)

2. Combinatorial optimization
(exactly solve objective)

3. Convex relaxation (upper
bound on objective)

7

∆

GQbb(x + δ, y; θ)

δ = 0

The linear case
Suppose our hypothesis is linear

Loss $+ &, (; * = , *-$ ⋅ (
(e.g. , hinge or logistic loss) and
perturbation region Δ is a norm ball
Δ = & ∶ & ≤ 2

Then maximization has exact
solution based on dual norm; a
simple instance of robust
optimization [Stoyer, 1973, Ben-Tal et al.,
2011, Xu and Manor, 2009]

8

max
6∈∆

, *- $+ & ⋅ (
= ,(min

6∈∆
*- $+ & ⋅ ()

= , *-$ ⋅ (− * ∗

The inner maximization problem

How do we solve the optimization?

max
$∈∆

Loss *+ ,, .; 0

1. Local search (lower bound
on objective)

2. Combinatorial optimization
(exactly solve objective)

3. Convex relaxation (upper
bound on objective)

9

∆

GQbb(x + δ, y; θ)

δ = 0

Local search

For neural networks, the loss
landscape is non-convex, inner
maximization problem is difficult to
solve exactly

This has never stopped us before in
deep learning … let’s just find an
approximate solution using gradient-
based methods

10

Projected gradient descent

Recall we are optimizing
max
$∈∆

Loss *+ ,, .; 0

We can employ a projected
gradient descent method, take
gradient step and project back into
feasible set Δ
, ≔ 3∆[, +∇$Loss *+ ,, .; 0]

11

∆
δ

α∇δGQbb(x + δ, y; θ)

P∆

The Fast Gradient Sign Method (FGSM)

To be more concrete, take Δ to be
the ℓ∞ ball, Δ = {&: & ∞ ≤)},
so projection takes the form

+∆ & = Clip(&, −),))

As 5 →∞, we always reach
“corner” of the box, called fast
gradient sign method (FGSM)
[Goodfellow et al., 2014]

& =) ⋅ sign ∇=Loss @+ &, B; D

12

∆

δ = 0

α∇δGQbb(x + δ, y; θ)

P∆

Illustration of adversarial examples

Will apologies to everyone, you are going to see MNIST examples in the
tutorial (yes, in 2018) … it is the best dataset for demonstrating some of
the more computationally intensive methods

13

FC-100
FC-10Conv-32x28x28

Conv-32x28x28

Conv-64x14x14

Conv-64x14x14

FC-200
FC-10

2-layer fully
connected MLP 6 layer ConvNet

Illustrations of FGSM

14

MLP:

ConvNet:
2.9% 1.1%

92.6%

41.7%

MLP ConvNet

Test Error, epsilon=0.1

Clean FGSM

Projected gradient descent

Projected gradient descent applied
to ℓ∞ ball, repeat:

≔ Clip) # + +∇-.

Slower than FGSM (requires multiple
iterations), put typically able to find
better optima

15

∆

δ = 0

Aside: Steepest descent
Gradients often small exactly at data
points, so don’t use “standard” PGD

(Unnormalized) proj. steepest descent

! ≔ #∆ ! + argmax
+ ≤-

./∇12 !

E.g. for ℓ∞ (typicial to choose inner

norm the same as the Δ constraint):

argmax
+ ≤-

./∇12 ! = 7 ⋅ sign(∇12 !)

16

∆

δ

∇δJ(δ)
v⋆

2α

Illustrations of PGD

17

ConvNet
(FGSM):

ConvNet
(PDG)

2.9% 1.1%

92.6%

41.7%

96.4%

74.3%

MLP ConvNet

Test Error, epsilon=0.1

Clean FGSM PGD

Targeted attacks
Also possible to explicitly try to change label to a particular class

max
$∈∆

Loss *+ ,, .; 0 − Loss *+ ,, .targ; 0

Consider multi-class cross entropy loss

Loss *+ ,, .; 0 = log∑
:
expℎ> *+ , : − ℎ> * ?

Then note that above problem simplifies to

max
$∈∆

ℎ> * ?targ − ℎ> * ?

18

Targeted attack examples

19

max
$∈∆

ℎ() 0 − ℎ() 7

max$∈∆ ℎ() 2 − ℎ() 7

Note: A targeted attack can
succeed in “fooling” the
classifier, but change to a
different label than target

Non-ℓ∞ norms

Everything we have done with
ℓ∞ norm possible with other ℓ#
norms

E.g., derive steepest descent
for ℓ2 ball (i.e., normalized
gradient descent), projection
onto ball

20

ℓ∞:

ℓ2:

About all those other attacks …

With apologies to the many authors that have written papers on different
attacks, most of these are variants of PGD for different norm bounds

Our belief: at this point in the field, it is better to describe the attack in
terms of 1) the allowable perturbation set Δ; 2) the optimization
procedure used to perform the maximization

21

The inner maximization problem

How do we solve the optimization?

max
$∈∆

Loss *+ ,, .; 0

1. Local search (lower bound on
objective)

2. Combinatorial optimization
(exactly solve objective)

3. Convex relaxation (upper
bound on objective)

22

∆

GQbb(x + δ, y; θ)

δ = 0

Exact combinatorial optimization

To describe exact combinatorial optimization procedure, we need to more
explicitly describe the network; consider a ReLU-based feedforward net

!1 = $

!%+1 = ReLU +%!% + ,% , . = 1,… ,1 − 1

ℎ4 $ =+5!5 + ,5

Targeted attack in ℓ∞ norm can be written as the optimization problem

minimize
<1:?

@A − @Atarg

F
+5!5 + ,5

subject to !%+1 = ReLU +%!% + ,% , . = 1,…1 − 1

!1 − $ ∞ ≤ O
23

Solving combinatorial problem

The optimization formulation of an adversarial attack can be written as an
binary mixed integer program [e.g., Tjeng et al., 2018, Wong and Kolter, 2018] or
as a satisfisiability modulo theories (SMT) problem [e.g. Katz et al., 2017]

In practice, off-the-shelf solvers (CPLEX, Gurobi, etc) can scale to ~100 hidden
units, but size depends heavily on problem structure (including, e.g, the size of !)

One of the key aspects of finding an efficient solution is to provide tight bounds
on the pre-ReLU activations "# ≤ %#&# + (# ≤)#

24

Bound propagation

How do we get the bounds !",$"? In general, if ! ≤ & ≤ $, then
' +! − ' −$+ * ≤ '&+ * ≤ ' +$ − ' −!+ *

Very loose in general, but
still useful for IP

Will return when we discuss
convex relaxations

25

x z2 z3 z4x z2 z3 z4

Certifying robustness

Consider the objective or our optimization problem

!" − !"targ
()*+* + -*

If we solve our the integer program for some .targ and the objective is

positive, then this is a certificate that there exists no adversarial example
for that target class

If objective is positive for all .targ ≠ ., this is a verified proof that there

exists no adversarial example at all

26

Certifying examples

27

min $7 − $0 ()*+* + -*
s. t. …

min $7 − $1 ()*+* + -*
s. t. …

= -2.54 (exists adversarial
example for target class zero
or another class)

= 3.04 (there is no adversarial
example to make classifier
predict class 1)

The inner maximization problem

How do we solve the optimization?

max
$∈∆

Loss *+ ,, .; 0

1. Local search (lower bound on
objective)

2. Combinatorial optimization
(exactly solve objective)

3. Convex relaxation (upper
bound on objective)

28

∆

GQbb(x + δ, y; θ)

δ = 0

Convex relaxation of the integer program

Solving the integer program is too
computationally expensive, so let’s
consider a convex relaxation

Replace the bounded ReLU
constraints with their convex hull

Optimization problem becomes a
linear program

29

li ui
Wizi + bi

zi+1

li ui
Wizi + bi

zi+1

Note on the convex relaxation

Convex relaxation provides a strict
lower bound on integer
programming objective (because
feasible set is larger)
Objective LP ≤ Objective(IP)

So if the objective of LP is still
positive for all target classes, the
relaxation gives a verifiable proof
that no adversarial example exists

30

Input x and
allowable perturbations

Final layer and
adversarial polytopeDeep network

Input x and
allowable perturbations

Final layer and
outer boundDeep network

Fast solutions to the relaxation

Solving a linear program with size
equal to the number of hidden units
in the network (once per example),
is still not particularly efficient

Using linear programming duality, it
is possible to achieve a lower
bound on the LP program, via a
single backward pass through the
network [Wong and Kolter, 2018]

31

Deepnetwork!1
!2

!3
#

Interval-based bounds

We can formulate optimization only
considering bound constraints

min
$%

&' ()*) + ,)
s. t. 0 ≤ *) ≤ 2

Has the analytical solution:
&'() +ℓ − &'() −2+ &' ,)

Even looser that previous bound
(but very fast to compute)

32

x z2 z3 z4

Certifying examples with convex bounds

33

min $7 − $0 ()*+* + -*
s. t. Binary IP constraints

min $7 − $1 ()*+* + -*
s. t. Convex constraints

= -2.54 (exists adversarial
example for target class zero
or another class)

= 1.78 (there is no adversarial
example to make classifier
predict class 1)

min $7 − $0 ()*+* + -*
s. t. Convex constraints

= -6.28 (may or may not exist
adversarial example)

Part II: Training adversarially robust models

34

The big picture

35

min
$

∑
&,(∈*

max
-∈∆

Loss 2+ 4, 6; 8

Part I: creating an adversarial example
(or ensuring one does not exist)

Part II: training a robust classifier

The outer minimization problem

36

Inner maximization:

max
$∈∆

Loss *+ ,, .; 0

1. Local search (lower bound
on objective)

2. Combinatorial optimization
(exactly solve objective)

3. Convex relaxation (upper
bound on objective)

Outer minimization:

min
3

∑
5,7∈8

max
$∈∆

Loss *+ ,, .; 0

1. Adversarial training

3. Provably robust training

Adversarial training
How do we optimize the objective

min
$

∑
&,(∈*

max
-∈∆

Loss 2+ 4, 6; 8

We would like to solve it with gradient descent, but how do we compute
the gradient of the objective with the max term inside?

37

Danskin’s Theorem

A fundamental result in optimization:
∇"max&∈∆

Loss ,+ ., 0; 2 = ∇"Loss ,+ .⋆, 0; 2

where .⋆ = max
&∈∆

Loss ,+ ., 0; 2

Seems “obvious,” but it is a very subtle result; means we can optimize
through the max by just finding it’s maximizing value

Note however, it only applies when max is performed exactly

38

Deep learning to the rescue

Let’s just ignore that technicality, and
proceed as if we were solving the
maximization exactly!

39

Adversarial training [Goodfellow et al., 2014]

Repeat

1. Select minibatch !
2. For each ", $ ∈ !, compute

adversarial example &⋆ "
3. Update parameters

(≔ (− +
! ∑

-,/∈0
∇2Loss("+ &⋆ " , $; ()

Common to also mix robust/standard
updates (not done in our case)

40

1.1% 0.9%

41.7%

2.6%

74.4%

2.8%

ConvNet Robust ConvNet

Test Error, epsilon=0.1

Clean FGSM PGD

Evaluating robust models

Our model looks good, but we should be careful declaring success

Need to evaluate against different attacks, PGD attacks run for longer,
with random restarts, etc

Note: it is not particularly informative to evaluate against a different type
of attack, e.g. evaluate ℓ∞ robust model against ℓ1 or ℓ2 attacks

41

What makes the models robust?

42

Loss surface:
standard training

Loss surface:
robust training

Convex methods for certifying robustness

Let’s use the convex bounds (in
this case, interval-bound-based
approach) to see what level of
adversarial performance we can
guarantee for the robust model

43

1.1% 0.9%

41.7%

2.6%

74.4%

2.8%

100% 100%

ConvNet Robust ConvNet

Test Error, epsilon=0.1

Clean FGSM

PGD Provable bound

Convexly verifiable models

Key insight: models that can be
(convexly) verified to be robust are a
small subset of the actually robust
models

Convex bounds are typically very
loose unless the model was built
with them in mind

44

All models

Robust models

Convexly
verifiable
models

Training provably robust models

Convex bounds are differentiable
functions of network parameters

Can train networks to minimize
these bounds directly

Recent work shows that interval
bounds often outperform more
complex strategies [Mirman et al, 2018,
Gowal et al., 2018]

45

1.1% 0.9% 5.1%

41.7%

2.6%
7.5%

74.4%

2.8%
7.79%

100.0% 100.0%

9.7%

ConvNet Robust ConvNet Robust bound
ConvNet

Test Error, epsilon=0.1

Clean FGSM PGD Provable bound

A word of caution…

Despite the “good” results we saw in this tutorial, this is more a function
MNIST than representative of where we really are in adversarial
robustness

More from Aleksander on this…

46

